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1. Introduction

It is well known that the computation of periodic structures is carried out using a
homogenization approach [1–4]. In this work the Fourier homogenization method is applied
[5,6] to analyze the dynamics of folded shells.

The dynamics of a regular closed folded shell composed of the same isotropic cylindrical panels
is governed by the following equations [7–8]:
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and the attached boundary conditions.
In the above w denotes the normal deflection; j is the stress function; k is the panel curvature

(k � constX0; but a generalization into the case k � kðyÞX0 can be easily realized); g is the
rotation angle of a normal to the surface during transition through y ¼ bi ði ¼ 0; 1; :::; n � 1Þ; and
b is the panel width; D is the cylindrical stiffness; E is the Young’s modulus of the panel material;
h denotes thickness; r is material density and t denotes time.

The occurrence in Eq. (1) of the generalized function
Pn�1

i¼0 d ðy � biÞ is substituted by its
Fourier approximation Xn�1
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1
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Assume that the period of vibrations is essentially larger than b: Taking into account the
introduced assumptions, in the first approximation the coefficients appearing in Eq. (1) are
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averaged, which corresponds to omitting the variable terms in series (2). This results in the
following equations:
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Note that the boundary conditions attached to Eq. (3) are found via averaging the given original
boundary conditions. A transition from Eqs. (1)–(3) possesses simple physical interpretation. It
corresponds to the transition from the initial system with discrete stringers to an equivalent
orthotropic system. The initial folded shell is substituted by a smooth shell with the reduced
curvature *k ¼ k þ g=b:

A solution to system (3) is sought in the following form:

w0 ¼F1ðx; tÞ cos
2pm

nb
y

� �
;

j0 ¼F2ðx; tÞ cos
2pm

nb
y

� �
; ð4Þ

where F1ðx; tÞ and F2ðx; tÞ are the functions satisfying the given boundary conditions. In order to
improve the obtained approximate solution, the following solution of Eq. (1) is assumed:

w ¼ w0 þ w1; j ¼ j0 þ j1: ð5Þ

Substituting Eq. (5) to Eq. (1) and taking into account Eq. (3), one obtains
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where
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@x2@Z2
þ

@

@Z4
fx; Zg ¼
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b
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The right-hand sides of Eqs. (6) and (7) change quickly with respect to Z; since the assumption
e51 has been introduced. This observation means that one can apply various asymptotical
approaches to solve system (6) and (7) (see Ref. [9]).

A particular solution of system (6) and (7), which varies with respect to Z more significantly
than the external load, is found by retaining the first approximation on the left-hand sides the
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terms having the derivatives of the maximal order with respect to Z [9]:
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The following simple form of solution is obtained (the terms of e order with respect to Eq. (1) are
omitted):

j10 ¼ Eh
e2gb
2p2

@2F1ðxÞ

@x2
cos Z FðZÞ;
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1

D

e2gb
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where FðZÞ is the periodic function with period 2pe; which in the interval 0pZp2pe has the form

FðZÞ ¼
p4

90
�

p2

12
e�2Z2 þ

p
12
e�3Z3 � 1

48
e�4Z4:

Note that the derived solution (9) does not satisfy the boundary condition, and the boundary
inaccuracy changes quickly with respect to Z: Consequently, this error is compensated by a
solution of the homogeneous system (6) and (7), which might be treated as a boundary layer [9].
To construct the boundary layer one may use the approximate system consisting only of maximal
order derivatives with respect to x and Z [3]:

=4
1j11 ¼ 0; ð10Þ

=4
1w11 ¼ 0: ð11Þ

Observe that Eq. (11) governs the plate deflection, whereas Eq. (10) describes the plate
deformation on its surface. Both equations may be easily solved using known methods (also a
static problem may be solved in a similar way).

2. Example

As an example consider the computation of a prismatic closed folded shell supported by balls
on its edges x ¼ 0;L where

w ¼
@2w

@x2
¼ j ¼

@2j
@x2

¼ 0 ð12Þ

which is loaded by a non-uniform surface load of the form

g ¼ P sin
px

L
cos

2pm

nb
y:
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For this case, a solution to Eqs. (3) is sought in the form:

w0 ¼ C1 sin ax cos Z;

j0 ¼ C2 sin ax cos Z;

where

C1 ¼
%Pd

Dd2 þ Ehe�4
b

2p

� �4

ðk þ g=bÞ2a4

" #;

C2 ¼ �
Eh

d
e�2 b

2p

� �2

ðk þ g=bÞa2C1;

d ¼ ða2 � 1Þ2; %P ¼ e�4 b

2p

� �4

a ¼
b

2L
e�1:

One finds from Eq. (9) the particular solution of system (6), which reads

j10 ¼ �Eh
e2gba2

2p2
C1 sin ax cos ZFðZÞ;

w10 ¼
1

D

e2gba2

2p2
C2 sin ax cos ZFðZÞ: ð13Þ

In this example solution (13) satisfies exactly the boundary conditions (12), and hence there is no
need to construct a boundary layer state governed by Eqs. (10) and (11).
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